Epicalyxin F and Calyxin I: Two Novel Antiproliferative Diarylheptanoids from the Seeds of *Alpinia blepharocalyx*

Mohan B. Gewali,[†] Yasuhiro Tezuka,[†] Arjun H. Banskota,[†] Mohammad Shawkat Ali,[†] Ikuo Saiki,[†] Hui Dong,[‡] and Shigetoshi Kadota^{*,†}

Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630-Sugitani, Toyama 930-0194, Japan, and China Pharmaceutical University, 24 Tong Jai Xiang, Nanjing, China

kadota@ms.toyama-mpu.ac.jp

Received August 30, 1999

ORGANIC LETTERS 1999

Vol. 1, No. 11 1733–1736

ABSTRACT

Epicalyxin F (1) and calyxin I (2), two novel diarylheptanoids, were isolated from a residual fraction of an EtOH extract of *Alpinia blepharocalyx*. Calyxin I (2) represented a new carbon skeleton, and epicalyxin F (1) possessed potent antiproliferative activity toward HT-1080 fibrosarcoma and colon 26-L5 carcinoma with ED₅₀ values of 1.71 and 0.89 μ M, respectively.

As a part of our ongoing research program to isolate bioactive compounds from Chinese medicinal plants, we have reported novel diarylheptanoids from an ether-soluble portion of an EtOH extract of seeds of *Alpinia blepharocalyx*,¹ which are used for the treatment of stomach disorders in The People's Republic of China. The isolated diarylheptanoids have an interesting structure: a chalcone or a flavanone moiety attached to a diarylheptanoid skeleton.¹ Further work on the residual fraction of the same extract afforded two novel diaryalheptanoids, epicalyxin F (1) and calyxin I (2). In this paper, we report the structure elucidation of these novel diaryalheptanoids together with their antiproliferative activity

against human HT-1080 fibrosarcoma and murine colon 26-L5 carcinoma.

The seeds of *A. blepharocalyx* were extracted with 95% EtOH, and the EtOH extract was fractionated into hexane-

Toyama Medical and Pharmaceutical University.

[‡] China Medical and Pharmaceutical University.

^{(1) (}a) Prasain, J. K.; Tezuka, Y.; Li, J. X.; Tanaka, K.; Basnet, P.; Dong, H.; Namba, T.; Kadota, S. *Tetrahedron* **1997**, *53*, 7833–7842. (b) Prasain, J. K.; Tezuka, Y.; Li, J. X.; Tanaka, K.; Basnet, P.; Dong, H.; Namba, T.; Kadota, S. *J. Chem Res., Synop.* **1998**, 22–23; *J. Chem Res., Miniprint* **1998**, 0265–0279. (c) Prasain, J. K.; Li, J. X.; Tezuka, Y.; Tanaka, K.; Basnet, P.; Dong, H.; Namba, T.; Kadota, S. *J. Nat. Prod.* **1998**, *61*, 212– 216. (d) Kadota, S.; Prasain, J. K.; Li, J. X.; Basnet, P.; Dong, H.; Tani, T.; Namba, T. *Tetrahedron Lett.* **1996**, *37*, 7283–7286.

⁽²⁾ Puyvelde, L. V.; Kimple, N. D.; Costa, J.; Munyjabo, V.; Nyirankuliza, S.; Hakizamungu, E.; Schamp, N. J. Nat. Prod. **1989**, *52*, 629–633.

soluble, ether-soluble, and residual fractions. Further investigation on the residual fraction gave two novel diaryalheptanoids, namely epicalyxin F (1) and calyxin I (2), along with helichrysetin,² 1,2-dihydro-bis(de-O-methyl)curcumin,³ calyxin A,^{1b} and calyxin F (1)^{1b}.

A series of chromatographies on Sephadex LH-20 and silica gel columns gave a mixture which showed a single spot on TLC with various solvent systems. The ¹H and ¹³C NMR spectra of the mixture indicated that it contained two epimers. The epimers could be separated only by using HPLC on a chiral column (Figure 1a), and the spectral data

Figure 1. (a) HPLC chromatogram of a mixture of **1** and **3** [column Sumichiral OA-47100; mobile phase hexane-1,2-dichloroethane-ethanol (80:12:8); flow rate 1.0 mL/min; detection UV (254 nm)]. (b) ROESY correlations for the tetrahydropyran part of **1**.

of each compound indicated that one of the compounds was calyxin F (3); thus the other was named epicalyxin F (1). The molecular formula of epicalyxin F $(1)^4$ was determined by HR-FAB-MS to be $C_{35}H_{34}O_8$, the same as that of **3**. The IR spectrum of 1 showed absorption bands at 3400 (OH) and 1610 (C=O) cm⁻¹. The ¹H and ¹³C NMR data of **1** were almost identical to those of 3, showing six sets of orthocoupled aromatic protons, a singlet aromatic proton, two trans-olefin protons, a methoxy group, two oxymethine protons, and four methylene groups. However, H-7 of 1 appeared at a slightly higher field (1, δ 5.05; 3, δ 5.13), suggesting that 1 was an epimer of 3 at C-7. This was confirmed by a ROESY experiment. In the ROESY spectrum of 1, significant correlations were observed between $H-3_{ax}$ and H- 6_{ax} and between H- 4_{ax} and H- 7_{ax} . These correlations indicated that all the protons H-3, H-7, H-6_{ax}, and H-4_{ax} must be oriented on the same side and the pyran ring must have

a boat conformation (Figure 1b). Considering the absolute configuration of calyxin F (**3**) as 3S,5R,7R reported previously,^{1b} the absolute configuration of epicalyxin F (**1**) was concluded to be 3S,5R,7S.

Calyxin I (2)⁵ was obtained as a yellow amorphous solid having $[\alpha]^{25}_{D}$ -16.4° (c 0.05, MeOH). The HR-FAB-MS of 2 showed a *pseudo*-molecular ion at m/z 678.2598, indicating the molecular formula C₄₂H₃₈O₉. Its IR spectrum showed a broad absorption band at 3400 cm⁻¹ and a sharp absorption band at 1700 cm⁻¹, indicating the presence of hydroxy and carbonyl groups, respectively. The ¹H NMR spectrum of 2 displayed signals corresponding to six sets of ortho-coupled aromatic protons [δ 7.62, 7.48, 6.94, 6.84, 6.64, 6.33 (all d, J = 8.5 Hz)], a singlet aromatic proton (δ 5.85), a methoxy group (δ 3.90), two *trans*-olefin protons $[\delta$ 7.78, 7.70 (both d, J = 16.0 Hz)], two oxymethine protons $[\delta 3.62 \text{ (m)}, \delta 4.16 \text{ (d}, J = 10.0 \text{ Hz})]$, and two methylene groups. These signals were almost identical to those of 1, a tetrohydropyran-bearing diaryalheptanoid with a chalcone moiety at C-5 (Table 1). The extra signals of two sets of ortho-coupled aromatic protons [δ 7.65, 6.33 (both d, J =8.5 Hz)] and an oxymethine proton at δ 4.64 (d, J = 10 Hz) suggested that 2 should have an extra para-substituted benzene group and an oxymethine group. This was further supported by the ¹³C NMR spectrum which showed additional signals of an oxymethine carbon (δ 83.3) and six aromatic carbons including a phenolic one at δ 157.4. On the basis of detailed analyses of the ¹H-¹H COSY and TOCSY spectra, C-6 of the tetrahydropyran ring was shown to be bonded to the additional oxymethine carbon. The significant correlations observed between H-7"" and C-5 and between H-7 and C-5 in the FG-pulsed HMBC spectrum also supported this conclusion. Moreover, correlation between H-7"" and C-1"" and C-2"" in the FG-pulsed HMBC spectrum reveled the attachment of a *p*-hydroxybenzyl group at C-6 of the tetrahydropyran ring. The slight downfield shift of C-2" of **2** as compared to the corresponding signal of 1(2, δ 167.4; 1, δ 166.7) indicated a possible ether linkage between C-8 and C-2", which was confirmed by the fact that on acetylation 2 gave only pentaacetyl derivative 2a.⁶ From these data, the planar structure of calyxin I was determined.

The relative stereochemistry of the chiral centers in 2 was elucidated on the basis of coupling pattern of the protons in the rings A and B and by the ROESY data (Figure 2). Both H-7 and H-7^{''''} appeared as doublets with a coupling constant of 10.0 Hz, suggesting they should have diaxial interaction with H-6_{ax} (quartet-like, J = 10.0 Hz). The triple doublet of H-5 was considered to be due to coupling with H-4_{ax} (8.0 Hz), H-6_{ax} (10.0 Hz), and H-4_{eq} (4.0 Hz) in a chair

⁽³⁾ Dong, H.; Chen, S. X.; Xu, H. X.; Kadota, S.; Namba, T. J. Nat. Prod. **1998**, 61, 142–144.

⁽⁴⁾ Light yellow amorphous solid; $[\alpha]^{25}_{D}$ +103.1° (c = 0.05, MeOH); HR-FAB-MS, m/z 583.2332 [calcd for $C_{35}H_{35}O_8$ (M + H)⁺, 583.2333]; IR (KBr) ν_{max} 3400 (OH), 1610 (CO), 1510, 1440, 1340, 1140 cm⁻¹.

⁽⁵⁾ Light yellow amorphous solid; $[\alpha]^{25}_{D} - 16.4^{\circ}$ (c = 0.05, MeOH); HR-FAB-MS, m/z 687.2598 [calcd for $C_{42}H_{39}O_9$ (M + H)⁺, 687.2594]; IR (KBr) ν_{max} 3400 (OH), 1610 (CO), 1510, 1440, 1340, 1200, 1140 cm⁻¹.

⁽⁶⁾ light yellow amorphous solid; HR–FAB-MS, m/z 919.2917 [calcd for C₅₂H₄₈O₁₄Na (M + Na)⁺, 919.2942]; ¹H NMR (CDCl₃) δ 7.49 (2H, d, J = 8.5 Hz, H-11″,15″), 7.34 (1H, d, J = 16.0 Hz, H-9″), 7.05 (4H, d, J = 8.5 Hz, H-12″,16″,2′,6′), 6.88 (2H, d, J = 8.5 Hz, H-3′,5′), 6.86 (1H, d, J = 16.0 Hz, H-8″), 6.77 (2H, d, J = 8.5 Hz, H-3″,5″), 6.62 (2H, d, J = 8.5 Hz, H-3″″,5″″), 6.64 (2H, d, J = 8.5 Hz, H-2″″,6″″), 6.62 (2H, d, J = 8.5 Hz, H-2″″,6″″), 6.62 (2H, d, J = 10.0 Hz, H-2″″,6″″), 6.27 (1H, s, H-5″), 4.73 (1H, d, J = 10.0 Hz, H-7″″), 4.20 (1H, d, J = 10.0 Hz, H-7), 3.41 (1H, m, H-3), 5.05 (1H, ddd, J = 10.0, 8.0, 4.0 Hz, H-5), 2.58 (2H, m, H-1), 2.52 (1H, m, H-4), 2.29 (1H, q like, J = 10.0 Hz, H-6), 2.24, 2.20, 2.18, 1.17, 1.12 (each 3H, s, H₃-OAc), 1.81 (1H, m, H-2), 1.70 (1H, m, H-2), 1.55 (1H, m, H-4).

Table 1.	¹ H and	¹³ C NMR	Data	of E	picaly	xin F	(1)	and	Calyxin	I (2) ^a
----------	--------------------	---------------------	------	------	--------	-------	-----	-----	---------	--------------------

	1		2			
	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	δ_{C}	HMBC ^c	
1	2.65 m	33.0	2.57 m	31.4	2', 6'	
2	1.76 m	41.5	1.78 m	39.0	1	
3	3.78 m	69.6	3.62 m	77.9	2, 4	
4	1.78 m	42.8	1.32 m	37.3		
	2.02 m		3.32 m			
5	3.38 m	27.3	3.08 ddd (10.0, 8.0, 4.0)	40.0	7, 7''''	
6	1.92 m	34.8	2.26 q like (10.0)	49.7	7''''	
	2.25 dd (12.0, 2.0)		•			
7	5.05 dd (12.0, 2.0)	76.2	4.16 d (10.0)	83.0	2‴, 6‴, 6	
1′		134.8		134.0	1	
2', 6'	7.02 d (8.5)	129.2	6.94 d (8.5)	130.4	1, 3', 5'	
3'. 5'	6.67 d (8.5)	117.6	6.64 d (8.5)	115.7	2'. 6'	
4'		156.8		155.7	2'	
1″		109.0		106.9	5″	
2″		166.7		167.4		
3″		109.0		106.2	5″	
4‴		162.8		162.0	OMe	
5″	5.95 s	93.4	5.85 s	92.4		
6″		161.7		163.5	5″	
7″		194.7		193.9	8". 9"	
8″	7.80 d (16.9)	126.2	7.78 d (16.0)	125.4	9″	
9″	7.70 d (16.0)	144.7	7.70 d (16.0)	143.5	8". 11". 15"	
10"		128.9		128.0	8", 9", 12", 14"	
11". 15"	7.58 d (8.5)	130.9	7.48 d (8.5)	131.0	9″	
12". 14"	6.82 d (8.5)	116.9	6.84 d (8.5)	116.6		
13″		161.7		160.7	11". 12". 14". 15"	
1‴		133.8		130.7	3‴. 5‴. 7	
2"". 6""	7.58 d (8.5)	128.9	7.62 d (8.5)*	130.2	3‴. 5‴. 7	
3'''. 5'''	6.79 d (8.5)	116.8	6.33 d (8.5)	115.1	2‴. 6‴	
4‴		158.3		156.7	2". 3". 5". 6"	
1''''		10010		133.0	3'''', 5'''', 7''''	
2"" 6""			7 65 d (8 5) ^b	130.2	3'''' 5'''' 7''''	
3'''' 5''''			6 33 d (8 5)	115.0	2"" 6""	
4″‴				157.4	2"", 3"", 5"", 6""	
7''''			4.64 d (10.0)	83.3	2"". 6""	
OMe	3.90 s	57.1	3.90 s	56.0	- ,0	
51110	0.000	01	0.000	00.0		

^{*a*} The ¹H and ¹³C NMR spectra were measured at 400 and 100 MHz, respectively, in CD₃OD, and coupling constants (parentheses) are in hertz. ^{*b*} Values are interchangeable. ^{*c*} ⁻¹H correlating with ¹³C resonance.

conformation. By closer inspection of a Dreiding model, ring B was also concluded to have a distorted chair conformation because a 10.0 Hz coupling constant was observed between H-7^{$\prime\prime\prime\prime$} and H-6_{ax}. This was further supported by the intense cross-peaks observed in the ROESY spectrum: H-5 and H-7,

Figure 2. ROESY correlations of the protons on the rings A and B of calyxin I (2).

H-5 and H-7^{''''}, H-5 and H-3, H-4 and H-6. Because all the diarylheptanoids isolated from *A. blepharocalyx* possess the 3S configuration,¹ the stereochemistry of **2** was assumed to be 3S,5R,6S,7S,7'''R.

Curcumin, a simple diaryalheptanoid isolated from *Curcuma longa*, is a well-known antioxidant and also has potent anticancer activity.⁷ We thus examined the antiproliferative

^{(7) (}a) Rajakumar, D. V.; Rao, M. N. Mol. Cell. Biochem. **1994**, *140*, 73–79. (b) Sreejayan; Rao, M. N. J. Pharm. Pharmacol. **1997**, *49*, 105–107. (c) Jiang, M. C.; Yang-Yen, H. F.; Yen, J. J. Y.; Lin, J. K. Nutr. Cancer **1996**, *26*, 111–120. (d) Syu, W. J.; Shen, C. C.; Don, M. J.; Ou, J. C.; Lee, G. H.; Sun, C. M. J. Nat. Prod. **1998**, *61*, 1531–1534. (e) Rao, C. V.; Rivenson, A.; Simi, B.; Reddy, B. S. Cancer Res. **1995**, *55*, 259–266. (f) Pereira, M. A.; Grubbs, C. J.; Barnes, L. H.; Li, H.; Olson, G. R.; Eto, I.; Juliana, J.; Whitaker, L. M.; Kelloff, G. J.; Steele, V. E.; Lubet, R. A. Carcinogenesis **1996**, *17*, 1305–1311. (g) Ciolino, H. P.; Daschner, P. J.; Wang, T. T. Y.; Yeh, G. C. Biochem. Pharm. **1998**, *56*, 197–206.

⁽⁸⁾ Ohnishi, Y.; Sakamoto, T.; Fujii, H.; Kimura, F.; Murata, J.; Tazawa, K.; Fujimaki, M.; Sato, Y.; Kondo, M.; Une, Y.; Uchino, J.; Saiki, I. *Tumor Biol.* **1997**, *18*, 113–122.

activity of the newly isolated diarylheptanoids against human HT-1080 fibrosarcoma and highly liver-metastatic murine colon 26-L5 carcinoma.⁸ Cellular viability in the presence and absence of experimental agents were determined using the standard MTT assay,⁹ and results are summarized in Table 2. Among the isolated compounds, epicalyxin F (1)

Table 2. Antiproliferative Activity of Isolated Compoundsfrom Residual Fraction of A. blrpharocalyx (ED50 Values Are in μM)^a

compound	colon 26-L5	HT-1080
epicalyxin F (1)	0.89	1.71
calyxin I (2)	8.39	9.08
calyxin F (3)	10.40	10.40
calyxin A	13.14	10.65
1,2-dihydro-bis(de-O-methyl)curcumin	62.61	105.51
helichrysetin	64.68	40.21
curcumin	23.23	23.42
5-fluorouracil	0.53	8.00

 $^{\it a}\,\text{ED}_{50}$ values were calculated from the mean of data from six determinations.

showed the strongest antiproliferative activity having ED₅₀ values of 0.89 and 1.71 μ M toward colon 26-L5 carcinoma and HT-1080 fibrosarcoma, respectively. The cytotoxicity of **1** against human HT-1080 fibrosarcoma is stronger than that of 5-fluorouracil (ED₅₀ 8.0 μ M), a clinically used drug for the treatment of human tumor¹⁰ and falls within the range

of the potent cytotoxic agent (ED₅₀ < 4 μ g/mL) made by Geran et al.¹¹ Other diarylheptanoids, except for 1,2-dihydrobis(de-*O*-methyl)curcumin, also had interesting antiproliferative activity with ED₅₀ values equal to or less than 10 μ M in both tested cancer cells; calyxin A showed an ED₅₀ of 13.14 μ M against colon 26-L5 cells. It is interesting to note here that all the diarylheptanoids bearing chalcone moieties had stronger antiproliferative activity than curcumin toward both of the cell lines. In addition, both a free chalcone (helichrysetin) and a simple diarylheptanoid [1,2-dihydrobis(de-*O*-methyl)curcumin] have weaker antiproliferative activities than the diaryalheptanoids bearing a chalcone moiety. This result indicates that the attachment of a chalcone moiety enhances the antiproliferative activity of diaryalheptanoids.

Acknowledgment. This work was supported in part by a Grant-in-Aid for International Scientific Research (No. 09041177) from the Ministry of Education, Sports, and Culture, Japan, and the Tokyo Biochemical Research Foundation, Japan.

OL990260P

⁽⁹⁾ Banskota, A. H.; Tezuka, Y.; Prasain, J. K.; Matsushige, K.; Saiki, I.; Kadota, S. J. Nat. Prod. **1998**, *61*, 896–900.

⁽¹⁰⁾ Introduction to the Cellular and Molecular Biology of Cancer; Franks, L. M., Teich, N. M., Eds.; Oxford University Press: 1997; 3rd ed., pp 343–352.

⁽¹¹⁾ Geran, R. I.; Greenberg, N. H.; MacDonald, M. M.; Schumacher, A. M.; Abbott, B. J. Cancer Chemother. Rep. **1972**, *3*, 1–90.